
Implementing GJK as a plugin for Unity

DH2323 Project Report June 2022

Christian K. K. Lindberg
 KTH Royal Institute of Technology

 Stockholm Sweden

 ckkli@kth.se

Figure 1: The implemented GJK algorithm visualized in a Unity scene. Objects intersecting turn red and lines are drawn between

the closest points of non-intersecting objects.

ABSTRACT

The Gilbert, Johnson and Keerthi (GJK) algorithm is as

fundamental algorithm in today’s computations of collision

detection. It allows for detection of intersection between convex

objects as well as computation of closest points between non-

intersecting convex objects. Many online tutorials and examples

of the algorithm simplify their implementation by using only two

dimensions and omit the computation of closest points. This

report provides an example of how to implement this in 3D as a

plugin for the game engine Unity. A scene in the provided project

offers a visualization of the algorithm with colors and lines. A

technical evaluation showed that the implementation of the

algorithm, with 190 calls in a single frame on 20 objects with 24

vertices each resulted in an average execution time of 21

milliseconds. Similarly, with 20 objects with 515 vertices the

average execution time was 120 milliseconds. It was concluded to

not be performant enough, as is, for real time applications. The

results also identified a single function as the main culprit,

allowing future work to easily improve the algorithm.

CCS CONCEPTS

• Computing methodologies ~ Computer graphics ~ Animation ~

Collision detection

KEYWORDS

GJK algorithm, computer interaction, collision detection, unity

ACM Reference format:

Christian K. K. Lindberg. 2022. Implementing GJK as a plugin for Unity:

DH2323 Project Report June 2022. Stockholm, Sweden, 6 pages.

1 Introduction

Collision detection in real-time applications rely on efficient

algorithms and one of the most used, and built upon, is the

Gilbert-Johnson-Keerthi (GJK) algorithm [11]. Collision detection

in real-time applications such as games, can be split up into two

phases [3]. The first broad phase is meant to be a fast screening

for identifying objects that are potentially colliding. In the second,

narrow phase, more accurate computations are made to determine

whether these potential collisions are happening and how they

should be resolved. Each phase can make use of several

combining techniques and algorithms. The GJK would in general

belong in the narrow phase. In the original paper, Gilbert et al.

[11] show how it gives the minimum Euclidean distance between

two convex polytopes, defined by the closest points in each

polytope. A polytope is a geometric object with flat sides, i.e.,

mailto:ckkli@kth.se

DH2323 Computer Graphics and Interaction, June 2022,

Stockholm, Sweden
C. K. K. Lindberg

faces, in n dimensions. With a distance above zero the polytopes

can be determined as not intersecting each other. The computation

time of the algorithm is said to be nearly linear in the total number

of vertices of both polytopes.

There are many useful variants and extensions of the GJK

algorithm described in the field [2,4,16,22], it is therefore

imperative to have a good understanding of the GJK for anyone

interested in simulated collisions, or physics, of objects.

The original paper on GJK [11] as well as books covering the

algorithm [3,9] are heavily numerically/mathematically inclined

in their explanations. This report therefore also looked to sources

outside the scientific realm that explains the GJK algorithm more

intuitively [5,6,17,18,23]. However, these sources simplify the

algorithm by either skipping the computation of the closest points

and/or use a simpler 2D environment. This project therefore aims

to contribute with an example of how the GJK algorithm can be

implemented in 3D with computation of the closest points of two

convex polyhedra (3D polytope). Furthermore, no readily

available implementation of the algorithm was found to be written

in C# and exemplified in a readily available game engine project.

This project therefore also aims to fill this void, by implementing

the GJK algorithm as a C# plugin for the game engine Unity [19]

and provide it as an open resource.

This project is guided by the Research Question: “How can the

GJK algorithm determine if two convex polyhedra are

intersecting, computing their closest points if they are not and be

implemented as a plugin for Unity?”

2 Background

This section briefly introduces some important concepts

related to the GJK. See references for more details.

2.1 Minkowski Addition

To get an understanding of how the GJK algorithm works, this

report studied several sources [3,5,6,9,17,18,23]. One of the main

concepts which the GJK takes advantage of is the Minkowski

addition, which is the sum or difference of two sets of position

vectors, A and B, in Euclidean space [3,9]. The sum A ⊕ B is

defined as:

 { | , }A B A BA B P P P A P B = +   (1)

Figure 2 and Figure 3 illustrate how the Minkowski sum looks

like geometrically.

Figure 2: The individual objects A and B in two dimensions.

Figure 3: The geometrical Minkowski sum of A + B, one can

imagine either object being swept around the other object.

With the new center being center A + center B.

The Minkowski difference A ⊖ B is similarly defined as:

 { | , }A B A BA B P P P A P B= −   (2)

However, geometrically we obtain the Minkowski difference by

adding A to the reflection of B about the origin:

 ()A B A B=  − (3)

Meaning the subtraction is recast to addition, both terms are

therefore often referred to as the Minkowski sum. The Minkowski

difference of two objects is often called the Translational

Configuration Space Obstacle (TCSO) or Configuration Space

Obstacle (CSO) [3,7,9]. This report will refer to is as CSO.

Implementing GJK as a Plugin for Unity
DH2323 Computer Graphics and Interaction, June 2022,

Stockholm, Sweden

Certain properties of the CSO are fundamental to the GJK and for

this report the relevant ones are:

1. if the two objects A and B are convex, their CSO will also

have a convex hull;

2. when not intersecting, the distance from the origin to the

closest point on the CSO is the distance between object A

and B;

3. when the two objects intersect their CSO contains the

origin.

Property 2 can be expressed as:

 (,) min{ : }d A B x x A B=  − (4)

Note that the closest point is not necessarily unique, there can

be several points at the same distance.

2.2 Support Point

Computing all points for the CSO would result in a cubic time

complexity, with all points i in A times all points j in B:

ij i jAB A B= −

However, the algorithm is only interested in the hull of the CSO.

Meaning the points with maximum distance from its center, in all

directions. This is essentially asking for the point with the

maximum dot product with a given direction D: max (D • ABij).

This is called a support point and is not necessarily unique. As the

dot product is distributive we can define:

()
()

max max

max max

ij i j

i j

D AB D A D B

D A D B

= −

= − −
 (5)

Finding the support point is thus a matter of only checking the dot

product of all the points Ai relative to direction D and all points Bj

relative to -D, giving the process a linear time complexity i+j.

2.3 Terminology

Apart from the already detailed concepts, there are some terms

to briefly clarify before the next section. A vertex is a point in

space, usually with additional attributes, in our context belonging

to one of the objects A, B or CSO. A point is a position in space,

not necessarily for a vertex but, a vertex has a point. A simplex is

the simplest polytope in any given n-space, i.e., a 0-simplex is a

point, 1-simplex a line, 2-simplex a triangle, 3-simplex a

tetrahedron etc. In the context of 3D space of this project, we can

thus have between 0- and 3-simplices.

3 Implementation

3.1 GJK Determine Intersection

The most influential sources followed when implementing the

GJK algorithm was the explanations of [11] and [12] which builds

on the former. These sources could explain in an intuitive way of

how intersection could be determined with the GJK.

The algorithm implemented is as follows:

ALGORITHM 1: GJK Intersection Algorithm (Adapted from

[17,23])

1: procedure bool GJK_intersect(Object a, Object b)

2: vector D = random direction

3: vector A = Support(a, b, D)

4: simplex s = {A}

5: D = -A

6: repeat

7: A = Support(a, b, D)

8: if dot(A, D) <= 0

9: return false

10: s = s ∪ A

11: if NextSimplex(S, D) == contains_origin

12: return true

The code can be reviewed at [13], script GJK_Muratori.cs.

Details of the algorithm can be read at [15], a brief explanation

follows.

The procedure returns true if object a and b intersect. Line 2-5

initialize the procedure. The function Support, at line 3 and 7, gets

the support point (see Section 2.2), essentially an implementation

of Equation 5. If the latest support was not found beyond the

origin, line 8, the algorithm will terminate, concluding

intersection is false. Otherwise it will add the support point to the

simplex s. The function NextSimplex, at line 11, checks if the

current simplex can enclose the origin. If it cannot, it discards the

points that cannot possibly contribute to enclosing the origin and

sets a new search direction towards the origin, for the next support

function call.

3.2 Closest Points

The algorithm in Section 3.1 is not getting the closest points

between two non-intersecting objects. A presentation at the Game

Developers Conference, in San Francisco 2010, by Erin Catto [5]

was studied to guide this implementation. That presentation

explains how to compute the closest points in 2D with a GJK

algorithm. However, the method would completely change current

logic of the NextSimplex written. Therefore, it was decided to

save all the necessary data needed with the current NextSimplex

implementation and after termination use the data to compute the

closest points. This resulted in the final code that can be reviewed

at [13], script GJK.cs.

The logic of finding the closest points is quite simple. We

know that when the two objects are not intersecting, we want to

find the point on the hull of their CSO closest to the origin. This

requires the current simplex building logic in NextSimplex to

build the simplex completely down to this point on the hull. The

algorithm can no longer terminate as soon as it’s determined that

intersection is impossible. The new main termination will be when

the algorithm detects it is repeatedly getting the same support

point. When the GJK algorithm terminates, with intersection

being false, it will have the smallest simplex needed to compute

DH2323 Computer Graphics and Interaction, June 2022,

Stockholm, Sweden
C. K. K. Lindberg

the closest points. At this termination the simplex will always

contain one to three vertices, giving us three cases to deal with:

1. The final simplex has just one vertex. That point on the

CSO is closest to the origin. This vertex is represented by a single

vertex in each of the two individual objects.

2. With more than one vertex we need to compute where

on this simplex is the point closest to the origin, as it isn’t

necessarily one of the vertices. With two vertices the algorithm

essentially needs to compute the “closest point on a line to

arbitrary point”. Computing this, we need to save weights of how

“close” to each vertex of the CSO is to the closest point on this

line. The weights are then applied to the corresponding vertices of

the two individual objects. Figure 4 illustrates this logic.

3. With three vertices the algorithm essentially needs to

calculate the “closest point on triangle to arbitrary point”.

Similarly, as with previous case, the weights need to be saved and

applied to the corresponding vertices of the individual shapes.

Figure 4: Computing the closest point on CSO to origin by

weighted vertices. The weights are applied to the

corresponding vertices on the individual objects.

3.3 Plugin and Visualizing in Unity

Coding the implementation as a plugin for Unity was

straightforward when writing in C#. The documentation by Unity

is simple enough to follow [20]. With this implementation as a

plugin, a scene that visualizes the intersection test and closest

points was created, as illustrated by Figure 1, using Unity version

2020.3.32f1. This Unity project is available at [14].

3.4 Issues

This implementation is not optimized for performance or

numerical robustness, and still suffers from at least one big issue.

The NextSimplex logic sometimes end up in an endless loop with

what seemed to be an edge case between two triangle faces. There

was not enough time to investigate this further and is therefore

presented as is.

4 Evaluation, Results and Discussion

4.1 Evaluation in Unity and Results

Figure 5: The two tests with 20 objects. Top: 20 spheres with

half intersecting each other. Bottom: 20 cubes with half

intersecting.

A technical evaluation measured the average execution time,

of a frame, with Unity’s deep profiler tool [21] and the number of

loops within the GJK algorithm per call was coded by hand to

output at each termination. Illustrated in Figure 5, the evaluation

ran two separate tests, comparing a set of 20 spheres and 20

cubes. A sphere mesh containing 515 vertices and a cube 24

vertices. The objects were given pseudorandom orientations by

hand, with half of the objects intersecting each other, in static

Implementing GJK as a Plugin for Unity
DH2323 Computer Graphics and Interaction, June 2022,

Stockholm, Sweden

positions. Running each test for ten seconds, an average of

measures is shown in the two bottom rows in Table 1. The

computer running the test had an Intel Core i5-6600K CPU at

3.50GHz.

Table 1: Metrics and measurement results of the evaluation

Sphere Cube

No. of Objects 20 20

No. of Mesh Vertices per Obj. 515 24

No. of GJK Calls per Frame 190 190

Avg. No. of GJK-loops per Call 4.15 4.05

Avg. Total Execution Time per Frame

(ms)

120 21

All the objects were being checked against each other with the

GJK algorithm at every frame (time step), resulting in 190 calls

per frame. The average number of loops within the algorithm

before termination for both objects were around 4.1. We can see

that the average execution time for a frame were much larger for

the spheres, being 120 milliseconds (ms) compared to 21ms for

the cubes. This naturally indicates that the larger number of

vertices in the spheres contributed to the longer execution time.

Unity’s deep profiling could confirm this showing the execution

times per function within the implementation. The function

FindFurthestPoint, which is an implementation of Equation 5,

contributed to more than 90% of the execution time for the

spheres and more than 60% for the cubes.

4.2 Future Perceptual Study

In games the player immersion should not be interrupted by

illogical physics. However, things that the player does not

perceive one can simplify and cut corners, saving computation

resources. It is hard to imagine how this implementation per se

would be evaluated, however, a future perceptual study where the

project could be used is for a sort of “method of adjustment” [12]

study. Measuring the threshold of participants ability to determine

how close two virtual convex objects can be positioned before

they appear to be colliding. The participants would be asked to

position two different virtual objects as close as possible without

them touching. The implementation of this project would verify

the distance between the objects or if they are colliding. The

results could perhaps tell us that some objects are perceived as

colliding on larger distances than other shapes. Allowing the

system to ignore doing collision test on these objects as the users

will not notice them. Alternatively, a simpler but more performant

type of collider could be used in situations where the player will

not notice the preciseness of a “mesh collider”.

4.3 Future Improvements

Section 5 concludes how the issue brought up in Section 3.4

could be addressed and how the algorithm could be sped up. This

project could be extended and improved in many ways. Right

now, the project just uses a “mesh collider”. The “collider” class

could be extended with primitive objects that has their own, faster,

implementation of FindFurthestPoint, also known as support

point. Furthermore, a broad phase technique could be

implemented such as the ”sort and sweep” [1], also described as

“sweep and prune”[8]. A technique that makes use of bounding

volumes for every object. The bounding volumes are simple

geometrical shapes that can be very quickly checked against each

other. The volumes could be axis-aligned bounding boxes or

bounding spheres. Spheres have the advantage of being

orientation independent. These volumes are stored in a data

structure that is iterated every frame, checking the volumes

against each other, and updating positions or orientation if needed.

If a volume is found intersecting another, the GJK would run on

the objects for a definitive collision detection.

5 Conclusion

The aim of this project was to provide an implementation of

the GJK in 3D with computation of closest points, written in C#,

as a plugin for Unity. The final implementation successfully runs

a GJK algorithm with computation of closest points. A Unity

project provides a scene that visualize intersection and closest

points. The plugin code and visualization scene are available on

GitHub [13,14] and written to be understandable by novices with

plenty of comments describing the code.

Though it was not the aim of the project to be

robust/performant, a technical evaluation showed that the code

may not ready-to-use for real-time applications. For example, a

real-time game would generally want to run at 60 frames per

second, equivalent to an execution time of 16ms per frame. The

implementation is well above that, with 20 objects executing at

20-120ms. However, the evaluation also showed that there is one

function that can be optimized for better performance, the

function FindFurthestPoint. It iterates all the vertices of a mesh,

running a dot product computation for each vertex to find the

support point. A future alternative method could be the hill

climbing approach described in [3,4,9]. Furthermore, 20 objects

with mesh colliders does not have to be tested every frame with

some improvements mentioned in Section 4.3.

The implementation also suffered from an edge case with

endless looping. This could be the result of lack of numerical

robustness in the NextSimplex function, as this code is adapted

from Muratori’s [17] tutorial which has been said to lack

numerical robustness[10]. Future work could look at [16] which

describe a more numerically robust approach for the GJK

algorithm.

REFERENCES
[1] David Baraff. 1997. An introduction to physically based modeling: rigid

body simulation II—nonpenetration constraints. SIGGRAPH course notes

(1997), D31–D68.

[2] Gino Van den Bergen. 1999. A Fast and Robust GJK Implementation for

Collision Detection of Convex Objects. Journal of Graphics Tools 4, 2

DH2323 Computer Graphics and Interaction, June 2022,

Stockholm, Sweden
C. K. K. Lindberg

(January 1999), 7–25.

DOI:https://doi.org/10.1080/10867651.1999.10487502

[3] Gino van den Bergen. 2003. Collision Detection in Interactive 3D

Environments. CRC Press.

[4] Stephen Cameron. 1997. Enhancing GJK: computing minimum and

penetration distances between convex polyhedra. In Proceedings of

International Conference on Robotics and Automation, 3112–3117 vol.4.

DOI:https://doi.org/10.1109/ROBOT.1997.606761

[5] Erin Catto. 2010. Computing Distance using GJK — GDC 2010. In Game

Developers Conference 2010. Retrieved June 3, 2022 from

https://box2d.org/publications/

[6] Ming-Lun Chou. 2013. Game Physics: Collision Detection – GJK | Ming-

Lun “Allen” Chou | 周 明 倫 . Retrieved May 1, 2022 from

https://allenchou.net/2013/12/game-physics-collision-detection-gjk/

[7] Ming-Lun Chou. 2013. Game Physics: Collision Detection – CSO &

Support Function | Ming-Lun “Allen” Chou | 周明倫. Retrieved June 9,

2022 from https://allenchou.net/2013/12/game-physics-collision-detection-

csos-support-functions/

[8] Jonathan D. Cohen, Ming C. Lin, Dinesh Manocha, and Madhav Ponamgi.

1995. I-COLLIDE: an interactive and exact collision detection system for

large-scale environments. In Proceedings of the 1995 symposium on

Interactive 3D graphics (I3D ’95), Association for Computing Machinery,

New York, NY, USA, 189-ff. DOI:https://doi.org/10.1145/199404.199437

[9] Christer Ericson. 2004. Real-Time Collision Detection. CRC Press.

[10] Randy Gaul. 2017. Gilbert-Johnson-Keerthi (GJK) collision detection

algorithm in 200 lines of clean plain C. r/gamedev. Retrieved June 11, 2022

from

www.reddit.com/r/gamedev/comments/6wivay/gilbertjohnsonkeerthi_gjk_c

ollision_detection/dm9g3mk/

[11] E.G. Gilbert, D.W. Johnson, and S.S. Keerthi. 1988. A fast procedure for

computing the distance between complex objects in three-dimensional

space. IEEE Journal on Robotics and Automation 4, 2 (April 1988), 193–

203. DOI:https://doi.org/10.1109/56.2083

[12] E. Bruce Goldstein and Laura Cacciamani. 2021. Sensation and Perception.

Cengage Learning.

[13] Christian Lindberg. 2022. frilel/CLCollision. Retrieved June 11, 2022 from

https://github.com/frilel/CLCollision

[14] Christian Lindberg. 2022. frilel/GJK_tester. Retrieved June 11, 2022 from

https://github.com/frilel/GJK_tester

[15] Christian Lindberg. 2022. Researching GJK. Christian’s Project Blog.

Retrieved June 11, 2022 from

https://dh2323christianlindberg.wordpress.com/2022/05/11/researching-gjk/

[16] Mattia Montanari, Nik Petrinic, and Ettore Barbieri. 2017. Improving the

GJK Algorithm for Faster and More Reliable Distance Queries Between

Convex Objects. ACM Trans. Graph. 36, 3 (June 2017), 30:1-30:17.

DOI:https://doi.org/10.1145/3083724

[17] Casey Muratori. 2006. Implementing GJK (2006). Retrieved May 1, 2022

from https://caseymuratori.com/blog_0003

[18] Reducible. 2021. A Strange But Elegant Approach to a Surprisingly Hard

Problem (GJK Algorithm). Retrieved June 7, 2022 from

https://www.youtube.com/watch?v=ajv46BSqcK4

[19] Unity Technologies. 2022. Unity Real-Time Development Platform | 3D,

2D VR & AR Engine. Retrieved June 7, 2022 from https://unity.com/

[20] Unity Technologies. 2022. Unity - Manual: Managed plug-ins. Unity

Documentation. Retrieved June 11, 2022 from

https://docs.unity3d.com/Manual/UsingDLL.html

[21] Unity Technologies. 2022. Unity - Manual: The Profiler window. Unity

Documentation. Retrieved June 11, 2022 from

https://docs.unity3d.com/Manual/ProfilerWindow.html#deep-profiling

[22] Gino Van Den Bergen. 2001. Proximity queries and penetration depth

computation on 3d game objects. In Game developers conference.

[23] Iain Winter. 2020. Winter’s Blog. GJK: Collision detection algorithm in

2D/3D. Retrieved June 3, 2022 from https://blog.winter.dev/2020/gjk-

algorithm/

	Abstract
	Introduction
	Background
	Implementation
	Conclusion
	References

